Voltage Dividers
|

Voltage Dividers

Voltage Divider Circuits are useful in providing different voltage levels from a common supply voltage. This common supply can be a single supply either positive or negative, for example, +5V, +12V, -5V or -12V, etc. with respect to a common point or ground, usually 0V, or it could be across a…

Current Dividers
|

Current Dividers

Current Divider Circuits are parallel circuits in which the source or supply current divides into a number of parallel paths. In a parallel connected circuit, all the components have their terminals connected together sharing the same two end nodes. This results in different paths and branches for the current to flow…

Current Sources
|

Current Sources

As its name implies, a current source is a circuit element that maintains a constant current flow regardless of the voltage developed across its terminals as this voltage is determined by other circuit elements. That is, an ideal constant current source continually provides a specified amount of current regardless of the impedance…

Voltage Sources
|

Voltage Sources

We have seen throughout this Basic Electronics Tutorials website that there are two types of elements within an electrical or electronics circuit: passive elements and active elements. An active element is one that is capable of continuously supplying energy to a circuit, such as a battery, a generator, an operational amplifier, etc. A passive element…

Nortons Theorem
|

Nortons Theorem

Norton on the other hand reduces his circuit down to a single resistance in parallel with a constant current source. Nortons Theorem states that “Any linear circuit containing several energy sources and resistances can be replaced by a single Constant Current generator in parallel with a Single Resistor“. As far as…

Thevenin’s Theorem
|

Thevenin’s Theorem

In the previous three tutorials we have looked at solving complex electrical circuits using Kirchhoff’s Circuit Laws, Mesh Analysis and finally Nodal Analysis. But there are many more “Circuit Analysis Theorems” available to choose from which can calculate the currents and voltages at any point in a circuit. In this…

Nodal Voltage Analysis
|

Nodal Voltage Analysis

Nodal Voltage Analysis complements the previous mesh analysis in that it is equally powerful and based on the same concepts of matrix analysis. As its name implies, Nodal Voltage Analysis uses the “Nodal” equations of Kirchhoff’s first law to find the voltage potentials around the circuit. So by adding together all these nodal…