Non-inverting Operational Amplifier

Table of Contents

In this configuration, the input voltage signal, ( VIN ) is applied directly to the non-inverting ( + ) input terminal which means that the output gain of the amplifier becomes “Positive” in value in contrast to the “Inverting Amplifier” circuit we saw in the last tutorial whose output gain is negative in value. The result of this is that the output signal is “in-phase” with the input signal.

Feedback control of the non-inverting operational amplifier is achieved by applying a small part of the output voltage signal back to the inverting (  ) input terminal via a Rƒ – R2 voltage divider network, again producing negative feedback. This closed-loop configuration produces a non-inverting amplifier circuit with very good stability, a very high input impedance, Rin approaching infinity, as no current flows into the positive input terminal, (ideal conditions) and a low output impedance, Rout as shown below.

Non-inverting Operational Amplifier Configuration

non-inverting operational amplifier

In the previous Inverting Amplifier tutorial, we said that for an ideal op-amp “No current flows into the input terminal” of the amplifier and that “V1 always equals V2”. This was because the junction of the input and feedback signal ( V1 ) are at the same potential.

In other words the junction is a “virtual earth” summing point. Because of this virtual earth node the resistors,  and R2 form a simple potential divider network across the non-inverting amplifier with the voltage gain of the circuit being determined by the ratios of R2 and  as shown below.

Equivalent Potential Divider Network

non-inverting amplifier potential divider

Then using the formula to calculate the output voltage of a potential divider network, we can calculate the closed-loop voltage gain ( AV ) of the Non-inverting Amplifier as follows:

non-inverting op-amp gain

Then the closed loop voltage gain of a Non-inverting Operational Amplifier will be given as:

non-inverting operational amplifier gain

We can see from the equation above, that the overall closed-loop gain of a non-inverting amplifier will always be greater but never less than one (unity), it is positive in nature and is determined by the ratio of the values of  and R2.

If the value of the feedback resistor  is zero, the gain of the amplifier will be exactly equal to one (unity). If resistor R2 is zero the gain will approach infinity, but in practice it will be limited to the operational amplifiers open-loop differential gain, ( AO ).

We can easily convert an inverting operational amplifier configuration into a non-inverting amplifier configuration by simply changing the input connections as shown.

non-inverting op-amp configuration

Voltage Follower (Unity Gain Buffer)

If we made the feedback resistor,  equal to zero, (Rƒ = 0), and resistor R2 equal to infinity, (R2 = ), then the resulting circuit would have a fixed gain of “1” (unity) as all the output voltage is fed back to the inverting input terminal (negative feedback). This configuration would produce a special type of the non-inverting amplifier circuit called a Voltage Follower, also known as a “unity gain buffer”.

As the input signal is connected directly to the non-inverting input of the amplifier the output signal is not inverted resulting in the output voltage being equal to the input voltage, thus Vout = Vin. This then makes the voltage follower circuit ideal as a constant voltage source or voltage regulator because of its input to output isolation properties.

The advantage of the unity gain voltage follower configuration is that it can be used when impedance matching or circuit isolation is more important than voltage or current amplification as it maintains the input signal voltage at its output terminal. Also, the input impedance of the voltage follower circuit is extremely high, typically above 1MΩ as it is equal to that of the operational amplifiers input resistance times its gain ( Rin x AO ). The op-amps output impedance is very low since an ideal op-amp condition is assumed so is unaffected by changes in load.

Non-inverting Voltage Follower

non-inverting voltage follower

In this non-inverting circuit configuration, the input impedance Rin has increased to infinity and the feedback impedance  reduced to zero. The output is connected directly back to the negative inverting input so the feedback is 100% and Vin is exactly equal to Vout giving it a fixed gain of 1 or unity. As the input voltage Vin is applied to the non-inverting input, the voltage gain of the amplifier is therefore given as:

unity gain buffer

Since no current flows into the non-inverting input terminal the input impedance is infinite (ideal conditions) so zero current will flow through the feedback loop. Thus any value of resistance may be placed in the feedback loop without affecting the characteristics of the circuit as no current flows through it so there is zero voltage drop across it resulting in zero power loss.

As the input impedance is extremely high, the unity gain buffer (voltage follower) can be used to provide a large power gain as the extra power comes from the op-amps supply rails and through the op-amps output to the load and not directly from the input. However in most real unity gain buffer circuits there are leakage currents and parasitic capacitances present so a low value (typically 1kΩ) resistor is required in the feedback loop to help reduce the effects of these leakage currents providing stability especially if the operational amplifier is of a current feedback type.

The voltage follower or unity gain buffer is a special and very useful type of Non-inverting amplifier circuit that is commonly used in electronics to isolated circuits from each other especially in High-order state variable or Sallen-Key type active filters to separate one filter stage from the other. Typical digital buffer IC’s available are the 74LS125 Quad 3-state buffer or the more common 74LS244 Octal buffer.

One final thought, the closed loop voltage gain of a voltage follower circuit is “1” or Unity. The open loop voltage gain of an operational amplifier with no feedback is Infinite. Then by carefully selecting the feedback components we can control the amount of gain produced by a non-inverting operational amplifier anywhere from one to infinity.

Thus far we have analysed an inverting and non-inverting amplifier circuit that has just one input signal, Vin. In the next tutorial about Operational Amplifiers, we will examine the effect of the output voltage, Vout by connecting more inputs to the amplifier. This then produces another common type of operational amplifier circuit called a Summing Amplifier which can be used to “add” together the voltages present on its inputs.


Similar Articles & Blogs

Explore similar articles on various electronics and electrical topics – 

Asynchronous Counter

An Asynchronous counter can have 2n-1 possible counting states e.g. MOD-16 for a 4-bit counter, (0-15) making it ideal for use in Frequency Division applications. But it

Learn More >>

Binary Weighted DAC

Digital-to-Analogue Converters, or DAC’s as they are more commonly known, are the opposite of the Analogue-to-Digital Converters we looked at in a previous tutorial. DAC’s convert binary

Learn More >>


We saw in the previous tutorial about the binary weighted digital-to-analogue converter that the analogue output voltage is the weighted sum of the individual inputs, and that

Learn More >>

Analogue to Digital Converter

Analogue-to-Digital Converters, (ADCs) allow micro-processor controlled circuits, Arduinos, Raspberry Pi, and other such digital logic circuits to communicate with the real world. In the real

Learn More >>

Transmission Gate

The analogue switch is a solid-state semiconductor switch that controls the transmission path of analogue signals. The open and closed operations of the switch positions

Learn More >>

Binary Adder

Another common and very useful combinational logic circuit which can be constructed using just a few basic logic gates allowing it to add together two

Learn More >>